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INTRODUCTION

In a rather short paper [F] we find proofs of several striking and deep
theorems. Admiring experts are said to call the result by G. FALTINGS which
confirms the Mordell conjecture ‘the theorem of the century’ (cf. JOHN
EwING’s ‘Editorial’ in The Math. Intelligencer, 5 (1983), number 4).

Already several expository papers have been devoted to these results; in
[Fa3] we find a survey for non-specialists by G. FALTINGS; in the Bourbaki
talks [D] and [S] several details of the proof are carefully examined; newspa-
pers all over the world have reported on these achievements; several specialists
study these theorems, the proofs and further developments. It may be hoped
that Séminaire Szpiro 1983/1984 will appear in print and it seems that A.N.
PARSHIN is planning to write a survey article on this material. Hence there is
no need for any exposition of these kinds; therefore, in this note, we restrict
ourselves to stating the theorems and to making some side-remarks on their
significance.

1. HILBERT'S TENTH PROBLEM
In Paris, at the International Congres of Mathematicians, 1900, DAviD HirL-
BERT delivered a lecture, in which he posed 23 problems. The 10th reads:

‘10 Determination of the solvability of a diophantine equation.

Given a diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: To devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.’



Excellent surveys of developments arising from the Hilbert problems can be
found in the 2 volumes of [Proc.]. In 1970 MATIJASEVICH gave a negative
answer to the tenth problem. Thus we are faced with the reality that in treat-
ing diophantine equations ad hoc methods will be needed; a fact which
mathematicians can digest only with some difficulty. However,

‘One of the charms of mathematics is the constant discovery of
unexpected almost unbelievable connections. Whatever is logically
possible may be true!” (cf. [Proc.], part 2, p.338).

Thus, the systematic approach Hilbert was asking for does not exist, but
mathematics seems in this way to gain interest instead of loosing it.

2. A THEOREM AND A CONJECTURE BY MORDELL
Let us consider one equation in two variables, and try to find rational solu-
tions. For example:

X +y? =1, (D
we see immediately that for any ¢t €Q,
. = [—1¢2 __x
1+2 7 1412

is a solution (also (—1,0) is a solution, and in this way we obtain all of them).
Thus we see that the equation has infinitely many solutions with x,y €Q. For
cubic equations the situation is already much more complicated. Consider:

Y2 =X¥X-1) )
Y +Y = X*-X 3)
X+yv3i=1 @),

the equation (2) has infinitely many rational solutions (and it is easy to find
them all: with the help of lines through the singularity (0,0) we can
parametrize the curve rationally, as we did in the previous case); the equation
(3) has many solutions over Q, for example

o =2, =36

5 YT s
is a solution of (3), but it is not so easy to find all solutions; of course, equa-
tion (4) has no solutions (x,y) with xy%0. We see the difficulties, and, what
happens if we consider equations of higher degree?

To an algebraic rational curve C one can attach a natural invariant, the
genus, g(C). This non-negative integer can be defined in several ways. For
example, it can be given with the help of the topology on the set of complex
points of C, i.e. with the Riemann surface C(C). If C is a curve in the projec-
tive plane P2, given by an equation involving an irreducible polynomial of
degree n, then



g(C) < 3(n —1)(n —2)

and equality holds iff C is a smooth curve (this means that it has no singulari-
ties over C). The curves in (1), (2), (3), (4) have genus 0,0,1,1, respectively.
Note the remarkable twist: we started studying a purely algebraically given
equation, we see that equations which look alike may be different in behaviour,
and the difference will be (partly) explained by properties of a
topologic/geometric concept such as a Riemann surface (working over @, we
use the topology of the Riemann surface of points with coordinates in C).
This combination of arithmetic and geometry will be used to study the ques-
tion:

given f €Q[X,Y], find solutions:
xyeQ or xyeZ, with f(xy) =0

From now on C is the complete curve given by such a polynomial f.

For rational curves (i.e. those with g(C)=0) the set C(Q) of solutions x,y eQ
is easily described:

either there are no solutions (e.g. X 24+y2=—1),
or there are infinitely many solutions (use a parametrization).

However solutions x,y €Z are much more difficuit. We come back to this
question later.
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If g(C)=1, we say we have an elliptic curve (the name: computing the arc-
length of an ellipse, WALLIS 1655, led to elliptic integrals, e.g. studied by
LEGENDRE 1825, and these functions parametrize curves with g =1, WEIER-
STRASS [825; therefore curves with g =1 are called elliptic curves). Any curve
with g(C)=1, and C(Q)# 2 can be given by a cubic equation (and for a
cubic polynomial f, the curve has either g(C)=0 if it is singular, or g(C)=1
if it is smooth). If E is elliptic, E CIP2, and it has a rational point, then its set
of points forms a commutative group, in a very natural way (use a geometric
description of this group law, or use the addition theorem for the Weierstrass
p-function). For an elliptic curve MORDELL proved in 1922:

let E be an elliptic curve; the group E(Q) is finitely generated

(cf. [Mol]); hence
EQ=72"0T,

with ref ¢ and T a finite commutative group, T =Tors(E(Q)), the torsion
subgroup of E(Q). This theorem can be generalized, as A. WEIL proved: for
any abelian variety A over a number field K (i.e. [K:Q]<<c0), the group 4 (K)
is finitely generated (cf. [Wel]). These results did not end this subject, but
rather started fascinating research areas, such as computation of r and T for a
given E. Some deep results have been achieved (such as: for any E,

#T < 16,

where T =Tors(E(Q)), MAZUR, 1976, cf. [Maz]), but many questions remain
open (Birch and Swinnerton-Dyer conjecture; Taniyama and Weil conjecture,
and many other difficult problems; an adequate description would lead us
much too far). Thus the 1922 result by MORDELL started a wide field of
research. At the same time MORDELL formulated a conjecture (which, by FALT-
INGS, is now a theorem):

(M). Let K be a number (i.e. K is a finite extension of Q), let C be an algebraic
curve over K, assume g(C)=2, then # (C(K))<co.

Note, as a corollary:
Let n€Z;, then # {xyeQ|x"+y" =1} < o0

because the projective curve defined by the homogeneous -equation
X" +Y"=Z" has no singularities, hence its genus equals g=%(n —D(n —2),
and n >4 implies g >3, while for n =3 we already know the result to be true.

Fermat’s ‘last theorem’ would say there are no rational solutions of this
equation with xy 0.



3. QUESTIONS AND CONJECTURES

An open problem in mathematics can be very stimulating. Whole branches of
this discipline have been developed in order to settle a certain question. Some-
times it seems that answering a question makes the field less interesting. In
some cases the methods turn out to be of greater importance than the results
aimed at. It also happens that the new theorems open new fields, give new
impetus to further research.

I think these results by FALTINGS will trigger new ideas. In itself the fact
that the Mordell conjecture has been solved is perhaps not so far-reaching, but
it gives a certainty that mathematical reality has such nice aspects, and, even
more importantly, the method of proof, and in particular the validity of con-
jectures by SHAFAREVICH and by TATE (cf. below) is of great technical impor-
tance.

When do we, mathematicians, say that a certain idea or hope is a conjec-
ture? Well, there seem to be different tastes. Let me illustrate this with two
examples. In 1955 SERRE posed a question, cf. [FAC], page 243 (is every finite
type projective K[X), ..., X,}-module free?). Soon several mathematicians
called this the Serre conjecture (it has been solved affirmatively), but to me it
seemed to be more in the style of the author in question to refer to this as ‘a
question posed by SERRE’ or ‘the Serre problem’. I remember a discussion
between SERRE and LANG, Arcata, 1974, where SERRE in his talk formulated a
certain question. LANG, in the audience, thought that enough numerical evi-
dence was available to have that question given the status of a conjecture,
while SERRE remained resistent to do so.

So, we see that different mathematicians may have different opinions about
the meaning of the word ‘conjecture’. We cite A. WEIL from his commentary
[Wed], Vol. II1, pp. 453/454:

‘... jévitai de parler de “conjectures”. Ceci me donne I'occasion de
dire mon sentiment sur ce mot dont on a tant usé et abusé.

Sans cesse le mathématicien se dit: “Ce serait bien beau” (ou:
“Ce serait bien commode”) si telle ou telle chose était vraie. Par-
fois il le vérifie sans trop de peine; d’autres fois il ne tarde pas a se
détromper. Si son intuition 2 résisté quelque temps a ses efforts, il
tend a parler de “conjecture”, méme si la chose a peu d’importance
en soi. Le plus souvent c’est prématuré.

En théorie des groupes, on a longtemps parlé d’une “conjecture
de Burnside”, qu’a vrai dire celui-ci, fort judicieusement, n’avait
proposée que comme probléeme. Il n’y avait pas la moindre raison
de croire que I'énoncé en question fut vrai. Finalement il était
faux.

Nous sommes moins avancés a4 I'égard de la “conjecture de
Mordell”. 11 s’agit 1a d’une question qu’un arithméticien ne peut
guére manquer de se poser; on n’apercoit d’ailleurs aucun motif
sérieux de parier pour ou contre. Peut-étre dira-t-on que
Pexistence d’une infinit¢é de solutions rationnelles pour une



équation f(x,y)=0, en I'absence d’une raison algébrique qui la
Justifie, est infiniment peu probable. Mais ce n’est pas un argu-
ment ...

En ce qui concerne les questions posées a la fin de [1967a), tant
de résultats partiels sont venus depuis lors s’ajouter aux miens qu’a
présent je n’hésiterais plus, je crois, a parler de “conjectures”,
encore que le terme d**hypothése de travail” soit peut-étre plus
approprié. En tout cas, s’il m’appartenait de donner un conseil 4
qui ne m'en demande point, je recommanderais d’employer
désormais le mot de “conjecture” avec un peu plus de circonspec-
tion que dans ces derniers temps.’

Of course the fact that a question turns out to have an affirmative answer
does not justify afterwards having used the terminology ‘conjecture’, thus I
have reproduced the opinions by SERRE and WEIL.

4. INTEGRAL POINTS: THE SIEGEL THEOREM

We like to study integral solutions of equations. Let me give a warning at this
point. Previously in this note we have gone back and forth between a polyno-
mial F and the algebraic curve defined by the equation F =0. But of course,
in studying integral solutions, the isomorphisms of the curves must be taken
over the ring of integers. Let me illustrate this with an example. The curves
defined by

Y?+Y = X>—X and 9*+8yp = £-16¢

are isomorphic over Q (by 4X =§, 8Y =1), they are not isomorphic over Z, the
point (§=1,7=—35) is an integral solution of the second equation but the
corresponding Q-rational point (x =7+ y = —3) does not have integral coordi-
nates. This shows we have to be careful in saying something like ‘an integral
point on a curve over Q.

The following theorem should be called the Thue-Siegel-Mahler theorem on
integral points on curves over number fields.

(S). Let K be a number field, let S be a finite set of discrete valuations of K, and
let

R = RS = n (')v

veS

(the ring of elements of K, integral outside S). Let C be a smooth affine algebraic
curve defined over R. Assume, either _
a) g >0 (here g is the genus of the compactification C of C®p K), or
b) g=0and #(C(K)—C(K))=3.
Then

#AR) < o

(cf. [La3] for references).



Example. Let K=Q, S =@, R=1Z, and suppose C is given by the equation
Y2=X>+17. If v is a discrete valuation corresponding to the prime p then 0,
consists of all elements that can be written as a /b with a€Z, beZ and
ged(b,p)=1. Thus Rg =R. The curve € is smooth and g(€)=1, so the equa-
tion Y2=X?+17 has finitely many integral solutions by the above theorem
(and NAGELL determined all of them, cf. [Mo2], page 246).

Application. Let K, S, R be as above. It is known that R™ (the group of
units of R) is finitely generated. We write

Jks := R"N(1+R") =
= {AeR|AeR” and (A—1)eR’}.

Applying (S) with € the curve given by the complex projective line minus three
points P! —{0,1,00}, we get

#JK,S < o0

(cf. [Ch]; this was known as a conjecture of JULIA ROBINSON).

Theorem (S) with R =0(K), i.e. S =, was known in 1929. The proof was
not easy. Through the work of FALTINGS we obtain a new proof (with S finite,
arbitrary).

It would be more systematic to put the theorem in the following form: K,
S, R as above, € an algebraic smooth curve defined over R, C the
compactification of C®g K. Then ((R) is finite in each of the following
cases:

©) g=0, #(C(K)-C(K)=3;
1) g=1 #(CK)-CK)=1;
(=2) g=2 (the Mordell case).

In this form the theorem becomes much more natural (to me) than in the clas-
sical form. The numbers 3 (for g =0), 1 (for g=1) and 0 (for g =2) are the
numbers of zeros which imposed on a global vector field on such a curve
makes it constant. This is what naturally comes out of the arithmetic-geometric
proof of (S).

So far we have described mathematical ideas and theorems mainly developed
between 1900 and 1930. To prove something like the Mordell conjecture it
turned out that new techniques were necessary. It took mathematicians a long
time to develop these new methods. As FALTINGS pointed out on several occa-
sions, his achievements were possible after much work done by SHAFAREVICH,
TATE, MUMFORD, PARSHIN, ARAKELOV, ZARHIN, RAYNAUD and many others.
The way FALTINGs combines these ideas is certainly astonishing, and in his
proof several ingenious turns can be seen. But we like to point out the impor-
tance of previous developments. Also we like to stress again the influential role



of algebraic geometry:

‘Allgemein ldszt sich sagen, dasz die Beweismethoden aus der alge-
braischen Geometrie stammen... Es scheint jedoch, als ob die
Tragweite dieser Entwicklungen von vielen Zahlentheoretikern
nicht voll erkannt worden ist. Es zeigt sich hier einmal mehr, dasz
die Zahlentheorie zwar zu Recht die Konigin der Mathematik
genannt wird, sie aber ihren Glanz, wie auch Koniginnen sonst,
nicht so sehr aus sich selbst als viel mehr aus den Kriften ihrer
Untertanen zieht.” (FALTINGS, [Fa3], p.I).

Or, we can read in [We5] on page 405 the way in which WEIL considers the
relationship between the theory of diophantine equations and algebraic
geometry:

‘... apres de timides essais de Hilbert et Hurwitz, puis de Poincaré,
Mordell remit les equations diophantiennes en honneur en demon-
trant son célebre théoréme, apres quoi l'analyse de Diophante est
devenue une branche, et non des moindres, de la géométrie
algébrique. Les roles se sont renversés. A present la meére a élu
domicile chez sa fille.’

5. THE SHAFAREVICH PHILOSOPHY

In Stockholm, at the International Congress of Mathematicians, 1962, LR.

SHAFAREVICH discussed certain finiteness conjectures. His philosophy reads as

follows:

a) fix a base B (e.g. the arithmetic case: K is a number field and S a
finite set of discrete valuations of K, then B is the set Spec(Rg) of all
prime ideals of Rg; or the function field case: let B be some algebraic
variety);

b) consider certain objects defined over the base (field extensions of K,
algebraic curves over K, abelian varieties over K ,...; these objects may
have some extra structure);

c) fix discrete invariants of these objects and insist on ‘good behaviour’ of
these objects with respect to the base (such as properties of non-
ramification, or of good reduction outside S').

We denote the set of objects satisfying such data by

Sh((a );(b);(c)).

Often, reference to ‘good behaviour’ will be suppressed in (c). The Shafarevich
philosophy is that in certain cases one may hope that

# Sh((a );(b)s(c)) < oo.

Example (Theorem of Hermite). Fix a number field K and a set S of discrete



valuations of K with #§ <oo; fix n €Z,, and consider field extensions L DK
of degree [L:K]=n, such that L is unramified K outside S. Then

# Sh(K ,S; fields L; [L:K]=n) < o0

(here the objects of course are considered up to =~ over K) (cf. [Ha], p.595).

This is the first example of the Shafarevich philosophy; one could say that
this is the case of ‘relative dimension zero’, and n is the other discrete invari-
ant we fix. To formulate the ideas by Shafarevich we generalize the notion of
‘unramified’ in the case of algebraic varieties over a field with a discrete valua-
tion.

Let K be a field, v a discrete valuation of K, and R, CK its valuation ring.
Let C be a complete curve over K. We say that C has good reduction at v if
there exists a smooth, proper curve C defined over R, such that €®; K~C.
As an example, let E be the projective plane curve given by the equation

Y’Z = X’+552°.

This equation can be used to define a curve over Z, but at the prime 5 this
equation defines a singular curve. However E has good reduction at the prime
5, because over @ it can also be defined by the equation

P = £+
(Y =5%, X=5%, Z=¢), and this new equation defines a curve over Z which
at the prime 5 has a smooth fibre. There is a lot of literature on this subject,
but we shall leave this aside.
Example. SHAFAREVICH proved: Fix K, S, g=1, then

# Sh(X,S; (hyper)elliptic curves C; g(C)=g) < o
(cf. [Se4], p. IV-7, [Pa3], p.79 and [Oo06], Th. 3.1 for details and proofs).

These proofs depend on the Siegel theorem (S). By FALTINGS we now have a
proof independent of (S).

We can also study these questions for abelian varieties (over number fields,
etc.). In this case definitions of good reduction can be given which are analo-
gous to those for curves. The Shafarevich conjecture (now a theorem by FALT-
INGS) reads:

(Sh). Let K be a number field and let S be a finite set of discrete valuations of K,
fix g €&y, the set of abelian varieties of dimension g, defined over K, having
good reduction for every v &S (up to isomorphism over K ) is a finite set:

# Sh(K .S : abelian varieties A ; dim(A)=g) < oo.

Remark. In some formulations of this conjecture it seems easier to use

10



polarized abelian varieties. A trick by ZARHIN tells us that for any abelian
variety A the abelian variety 4%X(4")* has a principal polarization. So, if we
can prove (Sh) for all g in the principally polarized case, the conjecture fol-
lows for abelian varieties. In the arithmetic case this simplification can be
made; in the function field case there are some difficulties.

Example. Take K=Q, S =g. It seems to be true that
Sh(Q, @ ; abelian varieties 4 ; dim(4)=g) = &

for every g. For g =1 this is due to TATE (cf. [Ogg], p.145); this is a special
case of the Taniyama-Weil conjecture. For g <3 this was proved by ABRASH-
KIN, cf. [Ab]. I was just informed (July 1984) that RAYNAUD has proved this
forallg.

Let C be an algebraic curve (over K), and A =Jac(C) its Jacobian variety. If
C has good reduction at v, then A has good reduction at v (the converse is
false). Therefore, from (Sh) we can easily derive:

(Sh, curves). Let K, S, g be as before, then

# Sh(K,S; curves C; g(O)=g)<oo.

6. THE IMPLICATIONS (Sh) = (M), AND (Sh) = (S)

In 1967, KoDAIRA constructed certain surfaces as branched coverings of
another surface (cf. [Ko]; cf. [Ka]). His construction can be performed in a
purely algebraic context, and it can also be applied to €, where C is an alge-
braic curve over K, further R CK and C—-Spec(R) (note that the (Krull)
dimension of € equals 2, there is the analogy). In this way PARSHIN showed
that the Mordell conjecture would follow from the Shafarevich finiteness state-
ment for curves (cf. [Pal], p.1168, Remark 2; cf. [Pa2]). We sketch the argu-
ments. Suppose there is given a curve C over K, and g(C)=g =2; we want to
show

#C(K) < oo.

Choose an even positive integer ¢ (e.g. ¢ =2), and construct for every P e(K)
the following objects: an étale covering C;—C by pulling back g-id; (where
J =Jac(C));

C] i J
fol g
cC - J,
a divisor 8p on C, by
8 = f7(P)

(note that C; is an irreducible algebraic curve defined over K); note that
deg(8p)=q23 , so it is even. Let K be the smallest field for which there exists a

11



divisor 85 on C,, rational over Kp, such that
81: ~ 281,1

(linear equivalence over Kp on C,). Now use the Kodaira construction: there
exists an algebraic curve Cp and a 2:1-covering

Cp—)Cl

which ramifies exactly at 8p (proof: if 8p is locally given by f eI'(U,0), where
U CC, is affine open, then Cp is locally given by

Spec(T(U O T1/(T*~f)),

and 8p ~ 28, tells us that these open pieces glue to a scheme over K;). Note
that g(Cp)=:h is determined by g and g (use the Hurwitz formula for the
coverings C'—»C and Cp—C’). There exists a field L such that [L:K]<oo,
with L DKp, for all P e C(K). This fact is crucial; it follows from the theorem
of Hermite: take Kp inside the field of rationality for the points of the fibre
above [6p] in
X2: Pic™(C\)— Pic™™(C), m = ¢%%;

this bounds the degree of Kp and Kp / K is unramified for all discrete valua-
tions v with v|2 and such that C has good reduction at v.

Now let T be the set of all discrete valuations w of L with the property that
w12 or there exists a valuation v on K, satisfying w [v such that C has bad
reduction at v. Clearly #T <oo. Furthermore Cp has good reduction for all

weT (this follows by extending the coverings Cp - C’—>C to Spec(R,)).
Thus we arrive at a map:

P Cp
C(K) — Sh(L,T; curves C; g(C)=h).

As said before, once K, C, g are given, then L, T and h are fixed. We show
that the fibres of this map are finite. From the covering Cp —»C we can find
back the point P (because this map ramifies exactly at P €C). Therefore the
claim follows from the following observation:

let D and C be curves, g(C)=2, then the set of separable surjec-
tive maps from D to C is finite

(there are many ways of proving this, e.g. it is a special case of the theorem of
De Franchis, cf. [La3], or, use [005] p.111, Lemma 3.3.; thus

# Sh(L,T; curves C; g(C)=h) < o0
implies

#C(K) < oo,

which is the sought-for finiteness statement in the Mordell conjecture. So far

12



for the implication (Sh)=(M).

In order to derive (S) from (Sh) we consider C over K with Q e C(K) (case
g(C)=1), respectively Q4,0,,0,€C(K), 3 different points (g(C)=0). Let §
be a finite set of discrete valuations of K, let R =R, be as before, and let
@—>Spec(R)=B be a curve obtained by extending C over B, and omitting the
section extending Q (we describe only the case g(C)=1). For any P e((R)
(i.e. P eC(K) such that for each v &S the sections extending P and Q do not
intersect above v) we take

f = Xq: C-C
and we define
8 = f(P+0Q);

from here we proceed as before. In case g(C)=0, for any P e((R) we choose
Ep—C, 2:1, ramified exactly at P, Qq, O and Q,, and we continue as before.
In particular, the observation:

let D and E be curves, g(E)=1, let Q €E, the set of separable
surjective maps from D to E which ramify at Q is finite

(and the analogous statement for g(C)=0 and Q,,0,,0,€E) can be used to
finish the proof.

We see that this geometric approach to arithmetic problems is very strong. It
brings out clearly what the correct conditions should be. These finiteness
theorems are exactly the kind of problems which can be handled in this way.

However these methods also have limitations. Note that in order to study an
‘easy’ equation like X" +Y" =Z" over an ‘easy’ field like @, the geometric
method has to work via a large extension of @, and the proof uses geometric
objects (abelian varieties) for which it is almost impossible to write out simple
defining equations. Thus for mathematicians who like to work with explicitly
given formulas these ideas seem far away from more ‘concrete methods’. This
solution of (M) does not belong to what we call ‘elementary methods’ in
number theory (some elementary methods are very difficult!). The reader could
see the discussion between MORDELL and LANG as recorded in [La3], pp.
349—358. We hope that the various developments have a positive mutual
influence.

We note that (at the moment) the geometric method does not give effective
bounds. (We would like to produce for each equation a bound for the coordi-
nates of the solutions). It seems that RAYNAUD and PARSHIN can give a bound
for the number of the solutions of the Fermat equation X" +Y" =Z", n =3,
with x,y,z €Z and coprime. Using the ‘effective Chebotarev’, cf. [LMO], part
of the proof by FALTINGS can be made effective.
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7. THE TATE CONJECTURE

In order to handle (co)homology of an algebraic curve C it is very useful to
know properties of the abelian variety Jac(C). Thus one is naturally led to the
study of abelian varieties. We denote for any n €Z .| by 4 [n] the kernel of the
map

nidy: A—A

(here 4 is an abelian variety). If 4 is defined over a field M, and char(M)
does not divide n, then

A[n(M) = (Z /n)%, g=dimA
(this is easy if char(M)=0, once you know that

A(C) ~ C8 /A,
where A ~Z% is a lattice in C#). For a prime number / we denote by

T,A = LmA[I'(M)
(projective limit taken with respect to X/: A[/'*']—A[I']). This is an abelian
group,

T4 ~(Z)%,
and Gal (M* / M) acts on it in a continuous way, here M* denotes the separ-
able closure of M. The advantage of these concepts is that they can be studied
over any base, and that they make visible a lot of the structure you want to
study. If A and B are abelian varieties over a field M we like to determine
Hom,, (4 ,B) (for example, given E =4, and E'=B are elliptic curves over Q,

say such that E modp and E'modp are isogenous for (almost) all p, does it
follow that E and E’ are isogenous over Q?). We obtain a natural map

Y;: Homy, (4 ,B) - Hom(T;A,T,B).

(/ some prime number, /5~char M). In general there is little chance that this
map is bijective: the left-hand side is a free Z-module of rank at most 4gg’
(g =dim4, g’=dimA’; at most Z‘iggl’ if char(M )=0), and the right-hand side
is isomorphic (as a group) to (Z;)*8; of course —®,Z, to the left-hand side
will help, but still there is no chance in general that the map is bijective. The
Tate conjecture reads (cf. [Tal], page 134, last paragraph):

(T). Let M be a field which is finitely generated over its prime field. Then for
every A and B (abelian varieties over M) and for every |#char(M) the map

¥: Homy (4 ,B)®Z; — (Hom(T;4,T,B))°
is bijective and

End((T;4 ®Q) is a semi —simple G —module
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(here G:=Gal(M* /M) and the superscript G indicates that only those
homomorphisms which commute with the action of G should be taken, and
finally @, = field of fractions of Z;).

In [Tal] TATE proved this in the case the M =F, is a finite field. FALTINGS
proved (T) in the case M =K, a number field. This has important conse-
quences, e.g., let 4 and B be abelian varieties over a number field have the
same zeta function, then they are isogenous. Thus one asserts the existence of
a morphism from apparently weaker data! See ZARHIN [Zad4] and MORET-
BAILLEY [MB] for other cases of the Tate conjecture; also cf. [FW]. I think
this theorem will have many applications in the future.

As already remarked, we are not going to enter in the proof of (Sh) and of
(T) (and hence of (M)). Let me only note that FALTINGs first proves weak
forms of (Sh), then using such finiteness results one derives (T) as indicated on
page 137 of [Tal] and given by ZARHIN in [Za4]; then a beautiful (and short!)
argument using deep facts like the Chebotarev density theorem and Weil’s
Riemann hypothesis for abelian varieties finishes the proof of (Sh). The proof
is both elegant and quite involved, the results are astonishing.

8. THE FUNCTION FIELD CASE
Let k be a field, let B be an affine curve over k with coordinate ring R (and
suppose B is smooth). In this case we speak of the function field case,
M =k(B) is a function field in one variable. There are striking analogies
between the function field case and the arithmetic case. That analogy seems
very stimulating. Already many mathematicians studied it fruitfully, and we
would need quite a lot of space to give an adequate description. Note that R is
a Dedekind domain, just as in the case of the ring of integers in a number
field. E.g. by using of the theory of minimal models, a curve C over k(B) can
be extended to a surface € with a morphism C—B having C over k(B) as gen-
eric fibre. Thus we see that methods of surfaces hopefully can be transported
to the arithmetic case etc.

From the rich variety of problems and results we like to mention only two.

If we want to settle a certain problem in arithmetical algebraic geometry, it
sometimes helps to decide first the case of a function field as a starting point.
E.g. the Mordell conjecture was proved for function fields by MANIN (in
characteristic zero, cf. [Mal]), and by GRAUERT (in the algebraic case, cf. [Gr]).
One has to make certain restrictions, e.g. if C is a curve over a field £ with
#C(k) not finite, then for any M Dk the ‘constant’ curve C ®, M certainly
has infinitely many M -rational points. But these restrictions are quite natural.
The ‘Shafarevich-Mordell conjecture in the function field case’ has obtained
much attention. We mention only results by PARSHIN, cf. [Pal], ARAKELOV, cf.
[Arl], Szpiro, cf. [Sz] (and there are many more). Here, results on algebraic
surfaces are useful: take C—B, a fibering by curves over a curve B, compactify
B, extend € to a complete surface, and try to compute all kinds of invariants
of this surface (cf. [Arl], pp. 1298-1301). But also deformation theory (‘rigi-
dity theorems’) comes in: one proves that the objects in consideration are rigid
and belong to bounded families (and finiteness follows). This line of thought is
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exposed in [Mu], pp. 41-43. Certainly this field of research will produce more
interesting theorems.

As said, often the function field case is used as a test case for the arithmetic
case. If one wants to prove a theorem for curves or for abelian varieties over
number fields, one can first analyze the analogous situation in the function
field case (either with £ a finite field, or with k =C, imposing extra restric-
tions). Thus it was surprising to see that the Shafarevich philosophy is correct
for abelian varieties over number fields, whereas FALTINGS in [Fal] shows that
the analogous finiteness theorem for families of principally polarized abelian
varieties with zero trace (i.e. non-constant in a very strong form) does not hold
for abelian varieties of dimension eight (!) in case of function fields of charac-
teristic zero (possibly there is a relation with new results by SERRE on /-adic
representations). Thus here the arithmetic case has no exceptions (which makes
life easy, e.g. replace 4 by 4> (4")*), whereas in the function field case one
has to be more careful.

We mentioned already the following method: if C—B is a fibering of curves
over a curve, compactify B to a complete curve, replace C by a complete sur-
face

C—B

and apply the theory of compact surfaces. This method, which is rather obvi-
ous in the function field case, can be imitated in the arithmetic case. If C is a
curve over a number field K, let R be the ring of integers of K, and
B:=Spec(R), with C—>B an extension of C to B (e.g. via minimal models).
ARAKELOV and FALTINGs have developed a theory of ‘arithmetic surfaces’ (C
has Kruli-dimension equal to two) which also takes into account intersections
at infinity, cf. [Ar2], [Fa2]. Certainly this abuts to ideas which go back to WEIL
and KRONECKER (cf. Weil’s talks [1939a] ‘Sur I'analogie entre les corps de
nombres algebriques et les corps de fonctions algébriques’ and [1950b]
‘Number theory and algebraic geometry’ in [We4), Vol. I and Vol. II). Several
basic facts about number fields and theorems on algebraic curves are merely
translations of each other. In this way we obtain a geometric interpretation
(and intuition) for certain algebraic concepts (an explanation of the height as a
degree of a certain line bundle is an example cf. [F], p.354; these concepts play
an essential role in the proof of (Sh), (T) and (M)). Geometry leads us to the
correct concepts in this part of number theory. It seems that ‘arithmetical alge-
braic geometry’ is in a rapid of developments.

9. A FINAL REMARK )
After having mentioned these beautiful and influential results I would like to
make a remark on the style in which they are written down in the paper [F].
For centuries mathematicians have struggled with deciding on the precision
in which mathematical achievements are to be recorded. Many concise
mathematical papers are only understandable for a small circle of insiders. But
often we see that when an author tries to make every argument precise, tries to
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capture every property in a symbol, the result can be an indigestible paper or
book. So we like to make descriptions and notation transparent so as to unveil
the true ideas and deep motivations for the theory. There is a variety in styles,
ranging from extensive treatises to concise descriptions of the essentials. As to
Falting’s paper I would like to make the following remarks in this respect.

At several places the author just says enough to give the basic ideas without
burying it under heaps of notation; to my taste this reflects the deep insight
the author has in these intricate matters, and it is stimulating to try to follow
the surprising way leading to these results. However, I feel, at some places the
author is too brief in this paper. At some places the author gives hints only
understandable for the experts, at several places references are lacking (e.g. on
p-365: ‘Beweis Torelli’; it would be easy to give a reference, and then some
details still have to be filled in, because Torelli’s theorem is formulated over an
algebraically closed field; a combination of these two little obstacles makes the
paper difficult for non-specialists at such a point); I feel the author could have
given more references. Furthermore, 1 have one fundamental criticism; the
author uses ambiguous notation, and he uses references in a way that does not
quite fit his situation. Thus even for specialists it becomes a difficult affair to
check details of this proof. It could have been avoided with more precision.
With such a style mistakes can be made more easily. It seems dangerous if
such a style would become daily practice in mathematics. I must give an exam-
ple to illustrate my critical remark. On p.364 of [F] we find on line 11 an iso-
geny between abelian varieties, and its kernel is denoted by G. We have seen
in the paper that the author uses the same kind of symbols for an abelian
variety over a field (4 over K), and for an extension (‘let A »S be a semi-
abelian variety’; here R is the ring of integers of K, and S =Spec(R); many
authors distinguish @S and @®; K =4, but FALTINGS uses the same nota-
tion in both cases). The use of the words ‘abelian varieties’ leads to the conclu-
sion that we work over a field, so G =Ker¢ would then be a finite group
scheme over K; but on line 7 from below we find G /R, so apparently G is
considered as a group scheme over S; the most logical guess gives a group
scheme G —S which is quasi-finite over S, but in general not finite over S'! At
the places where the abelian varieties have bad reduction, the group scheme
may fail to be finite. At that moment FALTINGS refers to a result by RAYNAUD,
but that result is valid for finite group schemes. The reference serves to com-
pute a certain ramification, but if one wants to complete the quasi-finite group
scheme to a finite one, this may create ‘new ramification’. This is not some-
thing which can be settled by a simple and direct argument, although the case
considered can be settled (cf. [D], p.13 and p.15), and finally the result seems
correct (except for [F], Satz 2 in that form). Personally I feel a style is not
acceptable if it is difficult even for insiders to check details of the proof. '

Certainly this small point will not diminish my enthusiasm and respect for
these results. Coming generations may judge whether this is ‘the theorem of
the century’. In the meantime, we can gratefully enjoy and use the new
developments.
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